
Quantum Physics 1 - Test 1

A particle of mass m is in the state

Ψ = Axe−a(mx2/h̄+3it),

where a is some positive real constant and A = 2
(

2ma
πh̄

)1/4√ma
h̄

.

a. For what potential energy V (x) does Ψ satisfy the Schrödinger equation? (5 points)

Hint : the Schrödinger equation is given by ih̄∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2

+ V (x)Ψ

b. What are the expectation values 〈x〉 and 〈p〉? Explain your answer. (4 points)
Hint : you do not have to work out any integrals.
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Quantum Physics 1 - Test 2

Consider a particle of mass m subject to the harmonic oscillator potential (V (x) = 1
2
mω2x2),

and assume that, at t = 0, the particle is in the state

Ψ(x, 0) =
1√
2

(ψ0(x) + ψ1(x)) .

a. (1 pts) Add the time dependence to Ψ (i.e., find an expression for Ψ(x, t)).

b. (3 pts) Calculate 〈x〉. (Hint : use orthonormality to evaluate integrals, and consult
the hints at the bottom.)

c. (3 pts) Calculate 〈x2〉 and σx.

d. (2 pts) Is there a moment in time when the momentum standard deviation σp
can be zero? Explain your answer.

Hint : x and p can be written in terms of ladder operators as follows:

x =

√
h̄

2mω
(a+ + a−) , p = i

√
h̄mω

2
(a+ − a−).

We also have the following ladder operator relations: a+ψn =
√
n+ 1ψn+1, a−ψn =

√
nψn−1.
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Quantum Physics 1 - Test 3

Consider the moving delta-function well, whose potential and normalized solution to the time-dependent
Schrödinger equation are given by

V (x, t) = −αδ(x− vt)

Ψ(x, t) =

√
mα

h̄
exp

(
−mα|x− vt|/h̄2

)
exp

(
−i

[(
E + 1

2
mv2

)
t−mvx

]
/h̄

)
where v is the (constant) velocity of the well, α > 0, exp(a) = ea and E = −mα2/2h̄2.

a. (3p) Calculate 〈x〉. Hint: You can use the integral
∫∞
0

xne−ax dx = n!
an+1 .

b. (2p) What is the probability to find the particle to either side of the well?

c. (1p) Calculate 〈p〉.

d. (3p) Recall the equation for the probability current

J ≡ ih̄

2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)
.

Calculate the probability current for this wave function. Which direction does the probability current
flow? (1p) Bonus: Express J in terms of Ψ
Hint: To avoid having to differentiate the absolute value, write Ψ = cf(x, t)g(x, t) with each f, g
containing one exponent, such that f = f ∗ and write out J before doing any differentiation.
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Quantum Physics test 4

Consider the following potential: V = 0 for x < 0 and V = −Vc for x > 0 , where Vc is a positive
constant. For a particle moving to the right with energy E0 > 0:

1. Sketch the potential and write the solution of the eigenvalue equation Ĥψ = Eψ for x < 0 and x > 0,
considering no incoming wave from the right (3 points).

2. Find the reflection coefficient R in terms of E0 and Vc (3 points).

3. Verify that R and T (transmission coefficient) sum up to 1. T is given by the formula

T =
√
E0 + Vc

E0

|F |2

|A|2
,

with A and F the coefficients of the plane wave travelling to the right for x < 0 and x > 0 accordingly
(4 points).
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Test 5 Quantum Physics 1

a) Using the formula:

σ2
Aσ

2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

, (1)

show that σHσp ≥ h̄
2 〈

dV
dx 〉. (3 points)

b) Consider the harmonic oscillator (V (x) = 1
2mω

2x2). Does the uncertainty
relation derived above give you information about the ground state? What
does it say about the excited states?

c) A generic state of the harmonic oscillator is a superposition of the ground
state and all the excited states. What does the uncertainty relation tell
you about generic states? (3 points)
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Quantum Physics 1 - Test 6

Consider the ground state of hydrogen, of which the wave function is given by

ψ100(r, θ, φ) =
1√
πa3

e−r/a.

a) (4p) Calculate 〈V 〉. Hint: Use the fact that 〈V 〉 = − h̄2

ma

〈
1

r

〉
, and use integration

by parts.

b) (3p) Using your result of (a), calculate 〈p2〉. If you did not manage to complete (a),
find 〈p2〉 in terms of 〈V 〉. The energy of the ground state ψ100 is given by

E1 = − h̄2

2ma2
.

c) (2p) What is 〈px2〉? Hint: You do not have to do any long calculations.
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Quantum Physics 1 - Test 7

Two particles, each of mass m, are attached to the ends of a massless rigid rod of length a. This
system (called a rigid rotor) is free to rotate in all three dimensions about the fixed center point.
The classical energy of this system is given by E = L2/(2I), where I = ma2/2 is the moment of
inertia of the system.

Now, we consider the case that a is very small and hence we will describe this system quan-
tum mechanically. Thus, we will use operators, resulting in the Hamiltonian below:

Ĥ =
L̂2

2I
.

(a) (2 pts) Find the allowed energies of the rigid rotor (i.e., find the eigenvalues of Ĥ).

(b) (2 pts) Find the corresponding degeneracies.

(c) (3 pts) Construct the ground state of the rigid rotor.

(d) (2 pts) Is there a difference between the classical ground state (i.e., the lowest possible value
for the classical energy) and the quantum mechanical ground state energy? Explain how
this is compatible with Heisenberg’s uncertainty principle.
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Test 8 Quantum Physics 1

a) Consider a system of two non-interacting identical particles, one in state
ψa and one in state ψb. These states are orthogonal and normalized.
Show that:

〈(x1 − x2)2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2

where 〈x〉ab =
∫
xψ?

a(x)ψb(x)dx. This term indicates the exchange
force. It takes the upper sign in ∓ for bosons and the lower for fermions.

b) Consider two non-interacting identical bosons in the one-dimensional
harmonic oscillator potential, V = 1

2
mω2x2. The ground state for a

single particle in this potential is:

ψ0 =
(mω
πh̄

)1/4
e−

mω
2h̄

x2

Is there an exchange force in the ground state of the two-particle sys-
tem? If so, is it attractive or repulsive? Assume the particles are in
the same spin state.

c) Consider two non-interacting identical fermions in the same potential.
However, this time the particles are in the singlet state where the total
spin is equal to zero. Is there an exchange force in the ground state of
this system? If so, is it attractive or repulsive?


